\qquad Date \qquad

Phone Cost

The cost of a phone is the phone's price, $\$ 264$, plus 6.25% tax.
(1) Use the expression $P+0.0625 * P$ to find the cost.
(2) Use the expression $P * 1.0625$ to find the cost.
(3) Apply properties of operations to the expression $P+0.0625 * P$ to produce the expression $P * 1.0625$.
\qquad Date \qquad

Utility Pole Scale Drawing

A utility pole 24 feet long has $28 \frac{1}{4}$-inch circumference at the top and $47 \frac{1}{8}$-inch circumference 6 feet from the base. Create and label a scale drawing of the pole in side view, with scale $\frac{1}{4}$ inch $=1$ foot.
\qquad
\qquad

Writing Sums as Products

Write each sum as a product with the given factor.

Example: $\quad 8+6 x=2 \cdot ?$
(1)

$$
6 y+12=3 \cdot ?
$$

(2) $-5 w+35=(-5) \cdot$?
(3) $4 z+1=4 \cdot$?
(4) $9 a y-9 b y+27 c y=9 y \cdot$?
\qquad
\qquad Date \qquad

Foul Play

The Hawks were leading the Pistons in basketball by a score of 10098. Just as time was running out, a Pistons player tried a 3-point shot. His defender had two choices: allow the shot, or stop it by fouling the Pistons player. Fouling would give the Pistons player 3 one-point free throws. The defender chose to foul and later
 wondered if it was a good choice.
(1) To analyze the defender's choice, let's assume that for the Pistons player, every 3-point shot has a probability $\frac{1}{3}$ of going in, and every free throw has probability 90% of going in.
(a)If the defender allows the shot, what is the probability that the shot wins the game as time runs out?
(b)If the defender stops the shot by fouling, estimate the probability that the free throws win the game.
(c) Write a paragraph arguing for or against the defender's choice, based on probability calculations and/or simulations.
\qquad
\qquad

Pencils down Think about the equation $x+4 \frac{1}{8}=\frac{2}{3}$.
(1) Is there a whole number that solves it?

Yes No
(2) Is there a non-whole number that solves it? Yes No
(3) Convince a classmate that your answers are right.
\qquad
\qquad

Car A and Car B

Car B

Car A and Car B were moving at constant speed, as shown in the graphs.
(1) At the end of the first minute, how many miles had each car moved?
(2) Which car was moving faster?
(3) For the faster car, write a formula for the number of miles moved in n minutes.
(4) How many miles does the faster car move in 10 minutes?

Name

\qquad Date \qquad

Speed Limit

If the speed limit in Canada is $100 \mathrm{~km} / \mathrm{hr}$ and you are driving 65 mph , are you over or under the limit? By how much?

Name \qquad Date \qquad

Oil Business

In 2018, an oil company rented an oil rig for $\$ 100,000$ per day. The company drilled a well and started pumping oil.
(1) How much oil must be sold each day to equal the rental cost? Note: 42 gal of oil could be sold for $\$ 70$ in 2018.

(2) The company estimates that the profit, P, in millions of dollars, after pumping oil for D days is $P=0.5 D-40$.
(a) What is the profit after the first day of pumping oil?
(b) On another sheet of paper or using technology, make a table of pairs of values (D, P) and graph the ordered pairs.
(c) How can the company make $\$ 30 \mathrm{M}$ of profit?
(3) An equivalent expression for P is $0.5(D-80)$. How does the 80 in this expression relate to the company's situation?
\qquad
\qquad

Calculating with Rational Numbers

(1) Calculate.
(a) $-4.1+4$
(b) $5 \div(-6)$
(c) $\quad-1(-1-1)$
(d) $2-\left(-\frac{1}{2}\right)$
(e) $\left(-\frac{3}{8}\right)(-8)$
(f) $0-\frac{1}{3}$
(g) $\frac{1}{7.9} * 7.9$
(h) $\left(\frac{1}{2}-\frac{1}{4}\right)(-9+9)$
(2) Show calculation 1(a) on a number line.
\qquad Date \qquad

Triangle Conditions

In $\triangle A B C$, side $A B$ is 4 units long, side $B C$ is 3 units long, and angle A measures 30°. Sketch two ways $\triangle \mathrm{ABC}$ might look.

Name

\qquad Date \qquad

Ticket Offers

Nechama is shopping online for a ticket to a play. Website A offers a discount of $\$ 7.50$ off the theater price. Website B offers a discount of 25% off the theater price.

(1) Is it mathematically possible that Website A is a better deal than Website B? Prove your answer.
(2) Is it mathematically possible that Website B is a better deal than Website A? Prove your answer.
\qquad Date \qquad

Temperature Change

In 1972 in Loma, Montana, the temperature changed from $-54^{\circ} \mathrm{F}$ to $+49^{\circ} \mathrm{F}$ in a $24-\mathrm{hr}$ period. Calculate the average rate at which the temperature changed. Answer to the nearest tenth in units of degrees/hr.

Name

\qquad Date \qquad

Wire Circle

A 15.1-inch long wire is bent into the shape of a circle with 2.9 inches left over. To the nearest 0.1 inch, what is the diameter of the circle?
\qquad Date \qquad

Comparing Rose’s and Liba's Solutions

Rose and Liba both solved this problem:

Jannat has 4 packs of balloons and 5 single balloons-29 balloons in all. How many balloons are in a pack?

Explain both of Rose's steps. Check that Liba's equations are all true statements about the balloons.

Rose

$$
\begin{aligned}
& 29-5=24 \\
& 24 \div 4=6
\end{aligned}
$$

Liba

Let x be the \# of balloons in a pack.

$$
\begin{gathered}
4 x+5=29 \\
4 x=24 \\
x=6
\end{gathered}
$$

