

Name_____

Date _____

Phone Cost

The cost of a phone is the phone's price, \$264, plus 6.25% tax.

(1) Use the expression P + 0.0625 * P to find the cost.

(2) Use the expression P * 1.0625 to find the cost.

(3) Apply properties of operations to the expression P + 0.0625 * P to produce the expression P * 1.0625.

Name_____

Date_____

Utility Pole Scale Drawing

A utility pole 24 feet long has $28\frac{1}{4}$ -inch circumference at the top and $47\frac{1}{8}$ -inch circumference 6 feet from the base. Create and label a scale drawing of the pole in side view, with scale $\frac{1}{4}$ inch = 1 foot.

Name	

	Writing Sum	s as Products
Write each	sum as a product with the give	en factor.
Example:	$8 + 6x = 2 \cdot ?$	Answer: $8 + 6x = 2(4 + 3x)$
(1)	$6y + 12 = 3 \cdot ?$	Answer:
(2)	$-5w + 35 = (-5) \cdot ?$	Answer:
(3)	$4z + 1 = 4 \cdot ?$	Answer:
(4)	$9ay - 9by + 27cy = 9y \cdot ?$	Answer:

Name_____

Date _____

Foul Play

The Hawks were leading the Pistons in basketball by a score of 100– 98. Just as time was running out, a Pistons player tried a 3-point shot. His defender had two choices: allow the shot, or stop it by fouling the Pistons player. Fouling would give the Pistons player 3 one-point free throws. The defender chose to foul and later wondered if it was a good choice.

- (1) To analyze the defender's choice, let's assume that for the Pistons player, every 3-point shot has a probability $\frac{1}{3}$ of going in, and every free throw has probability 90% of going in.
 - (a) If the defender allows the shot, what is the probability that the shot wins the game as time runs out?
 - (b)If the defender stops the shot by fouling, estimate the probability that the free throws win the game.
- (c) Write a paragraph arguing for or against the defender's choice, based on probability calculations and/or simulations.

Student Handout • Math Milestones™ Task 7:5

This task is not designed for numerical scoring.

Name		Do	ite	
Pencils do	<i>wn</i> Think about the equation $x + 4\frac{1}{8} = \frac{2}{3}$.			
(1)	Is there a whole number that solves it?	Yes	No	
(2)	Is there a non-whole number that solves it?	Yes	No	
(3)	Convince a classmate that your answers are ri	ght.		


```
Name _____
```


Student Handout • Math Milestones™ Task 7:7

This task is not designed for numerical scoring.

Name _____

Date _____

Speed Limit

If the speed limit in Canada is 100 km/hr and you are driving 65 mph, are you over or under the limit? By how much?

Name _____

	Oil Business
In 2 The	2018, an oil company rented an oil rig for \$100,000 per day. e company drilled a well and started pumping oil.
(1)	How much oil must be sold each day to equal the rental cost? Note: 42 gal of oil could be sold for \$70 in 2018.
(2)	The company estimates that the profit, <i>P</i> , in millions of dollars, after pumping oil for <i>D</i> days is $P = 0.5D - 40$.
	(a) What is the profit after the first day of pumping oil?
	(b) On another sheet of paper or using technology, make a table of pairs of values (<i>D</i> , <i>P</i>) and graph the ordered pairs.
	(c) How can the company make \$30M of profit?
(3)	An equivalent expression for <i>P</i> is $0.5(D - 80)$. How does the 80 in this expression relate to the company's situation?

Student Handout • Math Milestones™ Task 7:9

This task is not designed for numerical scoring.

Name _____

Date _____

Calculating with Rational Numbers (1) Calculate. (a) -4.1+4(b) $5 \div (-6)$ (c) -1(-1-1)(d) $2 - (-\frac{1}{2})$ (e) $\left(-\frac{3}{8}\right)(-8)$ (f) $0 - \frac{1}{3}$ (g) $\frac{1}{7.9} * 7.9$ (h) $\left(\frac{1}{2} - \frac{1}{4}\right)(-9 + 9)$ (2) Show calculation 1(a) on a number line.

Math Milestones

Name _____

Date _____

Triangle Conditions

In \triangle ABC, side AB is 4 units long, side BC is 3 units long, and angle A measures 30°. Sketch two ways \triangle ABC might look.

Name _____

	Ticket Offers
N W p: tł	Vebsite A offers a discount of \$7.50 off the theater rice. Website B offers a discount of 25% off the neater price.
(1)	Is it mathematically possible that Website A is a better deal than Website B? Prove your answer.
	Is it mathematically possible that Website R is a better deal than Website

Name_____

Date_____

Temperature Change

In 1972 in Loma, Montana, the temperature changed from $-54^{\circ}F$ to $+49^{\circ}F$ in a 24-hr period. Calculate the average rate at which the temperature changed. Answer to the nearest tenth in units of degrees/hr.

Name _____

Date _____

Wire Circle

A 15.1-inch long wire is bent into the shape of a circle with 2.9 inches left over. To the nearest 0.1 inch, what is the diameter of the circle?

Date _____

Comparing Rose's and Liba's Solutions

Rose and Liba both solved this problem:

Jannat has 4 packs of balloons and 5 single balloons—29 balloons in all. How many balloons are in a pack?

Explain both of Rose's steps. Check that Liba's equations are all true statements about the balloons.

RoseLiba29-5=24Let x be the # of balloons in a pack. $24 \div 4 = 6$ 4x + 5 = 294x = 24x = 6