Name

\qquad Date \qquad

Charging Cord

$\frac{2}{3}$ of a charging cord is $\frac{1}{2}$ meter long. How long is the charging cord? (Answer in meters.)
\qquad
\qquad

Prizes, Prices, and Percents

(1) Would you prefer 33% of a $\$ 100$ prize or 75% of a $\$ 50$ prize?
(2) 8 is 25% of what number?
(3) 14 is what percent of 200 ?
(4) Write 6.25% as a decimal, then as a fraction in lowest terms.
(5) Find the total cost of a $\$ 16$ item after a sales tax of 6.25% is added.
(6) A 3% tax on a $\$ 100$ item adds \qquad dollars to the cost. A 3% tax on a $\$ 1$ item adds \qquad dollars to the cost.
\qquad

	Hours after Midnight	Temp ${ }^{\circ} \mathrm{F}$
Time	-4	-42
8:00 pm	-3	-42
9:00 pm	-2	-41
10:00 pm	-2	-40
11:00 pm	-1	-39
Midnight	0	-39
1:00 am	1	-38
2:00 am	2	-38

South Pole Temperatures

The table shows temperatures at the South Pole before and after midnight on October 10-11, 2019. Plot the data on graph paper and label the plot. Describe any patterns you see.

Name \qquad Date \qquad

Gas Mileage

My car drives 570 mi with 15 gal of gas.
(1) Use mental math and/or pencil and paper to answer:
(a) If I drive 57 mi , I'll use \qquad gal.
(b) If I drive $5,700 \mathrm{mi}$, I'll use \qquad gal.
(c) If I have 5 gal left, I can drive \qquad more mi.
(d) I can drive \qquad mi with 30 gal.
(2) Calculate both unit rates for the proportional relationship. Use a calculator if you like. Write the answers here, and include the units.
(3) Answer these additional questions:
(a) If I drive 532 mi , I'll use \qquad gal.
(b) If I have 11 gal left, I can drive \qquad more mi.
(4) Make a two-column table using your answers to (1a), (1c), (1d), (3a), and (3b). Then use graph paper to plot the values in the table. Label the axes of your plot.
\qquad
\qquad

Positive and Negative Numbers

(1) Which of the numbers $5,-7, \frac{2}{3},-\frac{1}{2}$ is farthest from 0 on the number line? Which is closest to 0 ?
(2) True or false: $\frac{1}{2}>-8$.
(3) Explain why $-(-0.2)=0.2$ makes sense.

Name

\qquad Date \qquad

Planting Corn

A farmer uses a tractor to plant corn quickly in the springtime. The farmer plants 216 acres every 12 hours. Create a formula for the number of acres the farmer plants in n hours.
\qquad Date \qquad

Song Length Distribution

(1) Look up the 50 top songs on a music streaming service. Type each song's duration into a spreadsheet.
(2) Write a sentence about the data giving a measure of center and a measure of variability.
(3) Make a histogram of the data. (Use technology, or draw it in the space provided or on another sheet of paper.)
(4) Write a sentence describing the overall pattern of the distribution and any striking deviations from the overall pattern. \square
(5) Imagine that one year from now, you go back online and repeat (1)-(4). In what ways would you expect the data distribution to look similar? What differences would you expect to see?
\qquad Date \qquad

Evaluating an Expression

Pencils down If $r=1.748$, what is the value of $0.96 r+0.04 r-r$?

Name

\qquad Date \qquad

Truckload of Gravel

How much of a $\frac{3}{4}$-ton truckload is $\frac{2}{3}$ ton of gravel?

\qquad Date \qquad

Weekdays and Weekend Days

In the month of February 2021, there were 20 weekdays and 8 weekend days. Here are some questions about that month.
(1) (Circle all of the correct answers.) The ratio of weekdays to weekend days was

$$
\begin{array}{llll}
20: 8 & 10: 4 & 5: 2 & 5: 7
\end{array}
$$

(2) There were \qquad times as many weekdays as weekend days.
(3) True or false: $\frac{5}{7}$ of the days that month were weekdays.
(4) Approximately what percent of the days that month were weekdays?

Name

\qquad Date \qquad

Area Expressions

The diagram shows a rectangle. The variables a, b, c, and d are lengths in meters.
(1) Using the variables, write three different expressions for the area of the rectangle.
(2) Choose two of your expressions and show that they are equivalent by applying properties of operations.
(3) State the property or properties you used.

Name

\qquad Date \qquad

Coordinate Triangle

(1) What is the area of the triangle in the coordinate plane with vertices (1, 2), $(-5,2)$, and $(-8,9)$?
(2) How does the area change if we change the third vertex to $(-3,9)$?
\qquad
\qquad

Pencils down Think about the equation $241 p=\frac{3}{4}$.
(1) Is there a whole number that solves it? Yes No
(2) Is there a non-whole number that solves it? Yes No
(3) Convince a classmate that your answers are right.
\qquad
\qquad

Dividing Decimals and Fractions

Use pencil and paper.
(1) $81.53 \div 3.1=$?
(2) $\frac{7}{8} \div \frac{2}{3}=$?
(3) Check both of your answers by multiplying.

