K:1
How many blocks?
[Student tells how many.]
[Teacher slowly rearranges.]
If you count the blocks, how
many do you think there will be?

Math Milestones ${ }^{\text {TM }}$ Task List - Kindergarten

The 14 Math Milestones ${ }^{\text {TM }}$ tasks for kindergarten have been carefully crafted to embody kindergarten mathematics on one page.

K:1 How Many Blocks?
K:2 Two Groups of Books
K:3 Say the Numbers (Teens, Decades)
K:4 Bears Talk About Shapes
K:5 Adding to Make a Group of Ten
K:6 More Shells or More Stars?
K:7 Ten Pennies, Two Hands
K:8 Five Behind the Back
K:9 Compare 6 and 5
K:10 Hello, Dogs
K:11 Bye-Bye, Birds
K:12 Make Ten and Some More
K:13 Fluency within Five
K:14 Animals from Land and Sea
sm CP K.CC.B. 4
C A K.OA.A. 2
P K.CC.A.l, 2
sin C K.G.A.2, K.G.B.4,6
sin C K.OA.A. 4
CP K.CC.B. 5
an C P K.OA.A.3, 4
in C K.OA.A
С Р К.СС.В.4c, K.CС.С. 7
C A K.OA.A. 2
C A K.OA.A. 2
C K.NBT.A. 1
P K.OA.A. 5
n A K.MD.B. 3
$C=$ Task has a conceptual focus. $P=$ Task has a procedural skill \& fluency focus. $A=$ Task has an application focus. $\mathbb{L}^{m h}=$ Task is designed for use with manipulatives or objects. Students might also use manipulatives to support their work on other tasks

Standards for Mathematical Practice

MP. 1 Make sense of problems and persevere in solving them.	$\mathrm{K}: 5-8, \mathrm{~K}: 12$
MP. 2	Reason abstractly and quantitatively.
MP. 3 Construct viable arguments and critique the reasoning of others.	$\mathrm{K}: 1, \mathrm{~K}: 5, \mathrm{~K}: 8, \mathrm{~K}: 9, \mathrm{~K}: 12$
MP. 4 Model with mathematics.	$\mathrm{K}: 2, \mathrm{~K}: 7, \mathrm{~K}: 10, \mathrm{~K}: 11, \mathrm{~K}: 14$
MP. 5 Use appropriate tools strategically.	$\mathrm{K}: 4, \mathrm{~K}: 5$
MP. 6 Attend to precision.	$\mathrm{K}: 3, \mathrm{~K}: \mathrm{K}, \mathrm{K}: 13$
MP. 7 Look for and make use of structure.	$\mathrm{K}: 5, \mathrm{~K}: 12$
MP. 8 Express regularity in repeated reasoning.	$\mathrm{K}: 3, \mathrm{~K}: 7$

Standards codes refer to www.corestandards.org. One purpose of the codes is that they may allow a task to shed light on the Standards cited for that task. Conversely, reading the cited Standards may suggest opportunities to extend a task or draw out its implications. Finally, Standards codes may also assist with locating relevant sections in curriculum materials, including materials aligned to comparable standards.

Math Milestones ${ }^{\text {TM }}$ was created by Jason Zimba John W. Staley, Elizabeth Meier, Sandra Alberti, Harold Asturias, and Phil Daro

Math Milestones ${ }^{T \mathrm{M}}$ tasks are not designed for summative assessment. Used formatively, the tasks can reveal and promote student thinking. Student work on tasks could be collected in student portfolios.
© 2021 Student Achievement Partners, Inc. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0), To view a copy of this license, visit http://creativecommons.org / licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Some Math Milestones ${ }^{\text {TM }}$ tasks have been designed using image resources from Pixabay.com and illustration resources from Flaticon.com.

Student Achievement Partners believes every student should have access to joyful, asset-based, high-quality instruction. For more than a decade, our team of former educators has offered unmatched expertise on how standards-aligned math and literacy instruction can unlock student potential. Learn more at: LearnwithSAP.org

Math Milestones ${ }^{\text {TM }}$ Task List - Grade 1

The 14 Math Milestones ${ }^{\text {TM }}$ tasks for grade 1 have been carefully crafted to embody grade 1 mathematics on one page.

1:1	Lions at the Watering Hole	C A	1.OA.A.2, 1.OA,
1:2	Tens and Ones	C	I.NBT.B
1:3	Paper Clip Length Units	C A	1.MD.A
1:4	Analyzing Weather Data	A	1.MD.C. 4
1:5	Tyler's Grapes	C A	1.OA.A.1, 1.OA
1:6	Two Groups of Straws	P A	I.NBT.C, I.OA.A
1:7	Class Marble Jar	C A	1.OA.A.l, I.OA
1:8	Subtracting Units	C	1.NBT.C. 6
$1: 9$	Fluency within Ten	P	1.OA.C. 6
1:10	Two-Digit Addition	C P	1.NBT.C. 4
1:11	Using Properties and Relationships	C P	1.OA.B
1:12	Blowing Out Candles	C A	1.OA.A.l, 1.OA
1:13	Falling Icicles	C A	1.OA.A.l, 1.OA
1:14	Shape True/False	C	I.G.A

Iask has a conceptual focus. $\mathrm{P}=$ Task has a procedural skill \& fluency focus. A = Task has an application focus. $\mathbb{S}^{n h}=$ Task is designed for use with manipulatives or objects. Students might also use manipulatives to support their work on other tasks.

Standards for Mathematical Practice

MP. 1 Make sense of problems and persevere in solving them.	$1: 2,1: 4-7,1: 11-14$
MP. 2 Reason abstractly and quantitatively.	$1: 1,1: 3-5,1: 12$
MP. 3 Construct viable arguments and critique the reasoning of others.	$1: 11,1: 14$
MP. 4 Model with mathematics.	$1: 1,1: 4-7,1: 12,1: 13$
MP. 5 Use appropriate tools strategically.	$1: 3,1: 14$
MP. 6 Attend to precision.	$1: 2,1: 9-11$
MP. 7 Look for and make use of structure.	$1: 2,1: 8,1: 10,1: 11,1: 14$
MP. 8 Express regularity in repeated reasoning.	$1: 8$

MP. 8 Express regularity in repeated reasoning.

Standards codes refer to www.corestandards.org. One purpose of the codes is that they may allow a task to shed light on the Standards cited for that task. Conversely, reading the cited Standards may suggest opportunities to extend a task or draw out its implications. Finally, Standards codes may also assist with locating relevant sections in curriculum materials, including materials aligned to comparable standards.

Math Milestones ${ }^{\text {TM }}$ was created by Jason Zimba, John W. Staley, Elizabeth Meier, Sandra Alberti, Harold Asturias, and Phil Daro.

Math Milestones ${ }^{\mathrm{TM}}$ tasks are not designed for summative assessment. Used formatively, the tasks can reveal and promote student thinking. Student work on tasks could be collected in student portfolios.
© 202 Student Achievement Partners, inc. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). To view a copy of this license, visit http://creativecommons.org licenses/by 4.0 or send a letter to Creative Commons, PO Box 1866 Mountain View, CA 94042, USA.
Some Math Milestones ${ }^{T M}$ tasks have been designed using image resources from Pixabay.com and Freepik.com, and illustration resources from Flaticon.com.
Student Achievement Partners believes every student should have access to joyful, asset-based, high-quality instruction. For more than a decade, our team of former educators has offered unmatched expertise on how standards-aligned math and literacy instruction can unlock student potential. Learn more at: LearnwithSAP.org

2:1
Avi made a paper chain. Then Avi
added 29 more links to the paper
chain. Now there are 52 links
in the paper chain. How many links
were in the paper chain before?

2:2 (1) True or false?
(a) 2 hundreds +3 ones >5 tens +9 ones
(b) 9 tens +2 hundreds +4 ones <924
(c) $456<5$ hundreds
(2) Write the number that makes each statement true.
(a) 7 ones +5 hundreds = \qquad
(b) 14 tens $=$ \qquad
(c) $90+300+4=$ \qquad

2:3	Write the sums and differences.	$\begin{array}{r} 36 \\ +45 \\ \hline \end{array}$	$\begin{array}{r} 72 \\ -17 \\ \hline \end{array}$	$\begin{array}{r} 64 \\ +27 \end{array}$	$\begin{array}{r} 82 \\ -55 \\ \hline \end{array}$

2:4 Faith went to the park. The picture graph shows all of the animals Faith saw.

Faith said, "I saw fewer butterflies than birds." How many fewer butterflies did Faith see?

2:5 Write the value of each sum. Use as much time as you need. If you "just knew it," then draw a check mark, like this: $2+24 \sqrt{4}$ student handout 2:5

2:6 A rope is 32 feet long. The rope is cut into two pieces. One piece is 3 feet long. How long is the other piece?
Equation model:
Answer: \qquad feet

2:7 (1) Write the number that makes the statement true.
6 hundreds +3 tens +4 ones
= 5 hundreds + \qquad tens +4 ones.
(2) How do you know your statement is true?
(3) Look for connections between your statement and this $\begin{array}{r}513 \\ 634 \\ -482 \\ \hline 152\end{array}$

2:8 Write the number that makes each equation true. Use as much time as you need.

2:9 A farmer said, "Last night some deer came and ate 16 of my cabbages. Now I only have 38 cabbages." How many cabbages were there before the deer came?
Equation model: \qquad
Answer: There were \qquad cabbages.

2:10 Check the subtraction by adding. $946-678=268$

2:11 A grass snake is 28 inches long. A rat snake is 74 inches long. How much longer is the rat snake?
Draw a diagram to illustrate your solution. Label the diagram with numbers.

2:12 At recess there was a jump-rope contest.

How many times did Catherine jump?
Equation model: \qquad
Answer: Catherine jumped \qquad times.

2:13 Marlon and Malia went apple-picking.

How many apples did Malia pick?
Equation model: \qquad
Answer: Malia picked \qquad apples.

2:14 Zariah got one answer wrong.
(1) Which answer did Zariah get wrong?
(2) Correct Zariah's wrong answer.
(a) Show how the rectangle can be divided into 15 squares.

(b) 2 halves make one whole.
(c) Draw a triangle. All three sides of your triangle must have different lengths.

Math Milestones ${ }^{\text {TM }}$ Task List - Grade 2

The 14 Math Milestones ${ }^{\text {TM }}$ tasks for grade 2 have been carefully crafted to embody grade 2 mathematics on one page.

2:1	Paper Chain
2:2	Place Value to Hundreds
2:3	Fluency within 100 (Add/Subtract)
2:4	Animals in the Park
2:5	Sums of Single-Digit Numbers
2:6	Cutting a Rope
2:7	Subtraction Regrouping
2:8	Fluency within the Addition Table
2:9	Disappearing Cabbages
2:10	Three-Digit Addition/Subtraction
2:11	Grass Snake vs. Rat Snake
2:12	Jump-Rope Contest
2:13	Apple-Picking
2:14	Correcting a Shape Answer

C = Task has a conceptual focus
$\mathrm{P}=$ Task has a procedural skill \& fluency focus.
A = Task has an application focus.

Standards for Mathematical Practice

MP. 1 Make sense of problems and persevere in solving them.	$2: 1,2: 2,2: 5-9,2: 11-14$
MP. 2 Reason abstractly and quantitatively.	$2: 6,2: 7,2: 11-13$
MP. 3 Construct viable arguments and critique the reasoning of others.	$2: 7,2: 14$
MP. 4 Model with mathematics.	$2: 1,2: 4,2: 6,2: 9,2: 11-13$
MP. 5 Use appropriate tools strategically.	$2: 14$
MP. 6 Attend to precision.	$2: 2-5,2: 7,2: 8,2: 10$
MP. 7 Look for and make use of structure.	$2: 2,2: 3,2: 7,2: 10,2: 14$
MP. 8 Express regularity in repeated reasoning.	$2: 2$

MP. 8 Express regularity in repeated reasoning.
Standards codes refer to www.corestandards.org. One purpose of the codes is that they may allow a task to shed light on the Standards cited for that task. Conversely, reading the cited Standards may suggest opportunities to extend a task or draw out its implications. Finally, Standards codes may also assist with locating relevant sections in curriculum materials, including materials aligned to comparable standards.

Math Milestones ${ }^{\text {TM }}$ was created by Jason Zimba, John W. Staley, Elizabeth Meier, Sandra Alberti, Harold Asturias, and Phil Daro.

Math Milestones ${ }^{T M}$ tasks are not designed for summative assessment. Used formatively, the tasks can reveal and promote student thinking Student work on tasks could be collected in student portfolios.
© 2021 Student Achievement Partners, Inc. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). To view a copy of this license, visit http://creativecommons.org licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866 Mountain View, CA 94042, USA

Some Math Milestones™ tasks have been designed using image resources from Pixabay.com

Student Achievement Partners believes every student should have access to joyful, asset-based, high-quality instruction. For more than a decade, our team of former educators has offered unmatched expertise on how standards-aligned math and literacy instruction can unlock student potential. Learn more at: LearnwithSAP.org

3:1 There are five teams in the volleyball league. Every team has six players. How many players are in the volleyball league?
Equation model: \qquad
Answer: \qquad

3:2	

The picture shows a dog sleeping on a rug. The rug design is a rectangular array of squares with a dot in each square.

Below are four expressions. One expression equals the total number of dots in the rug design. Which expression equals the total number of dots in the rug design? Tell how you decided.
$12 \times 14,11 \times 14,12 \times 15,11 \times 15$
3:3
(1) How much area is shaded?

(2) Using a ruler, draw a rectangle with area 28 square centimeters. Write the length and width of your rectangle.

Length: \qquad Width:

3:4 Jasmine bought 45 corn seeds. She arranged the seeds into piles of 9 seeds each. How many piles were there? Equation model: \qquad
 Answer: \qquad
3:5 Our class picked up litter on the playground. One student wrote tally marks to record the things we picked up.

Paper HI HH HI HH
 Glass HH HH Garbage HHHHH HH HH HH

Show the data another way by drawing a scaled picture graph in which 1 picture stands for 10 things picked up.

3:6 Using what you know about fractions, decide which is greater, $\frac{1}{73}$ or $\frac{1}{41}$. Tell how you decided.

3:7 Here is a list of numbers. Where does each number belong on the number line?
$\frac{1}{2}, \frac{1}{4}, 2, \frac{5}{4}, \frac{2}{2}, \frac{3}{2}, \frac{6}{4}, \frac{2}{4}, \frac{3}{1}$
Draw a dot to show the location of each number. Label each dot. The first number in the list has been located for you.

3:8 (1) Name two attributes that are shared by triangles and squares.
(2) Name a category of shapes that includes triangles and squares and also includes other shapes that have both of the attributes you named.

3:9 Our class painted pictures. The teacher will hang the pictures on 4 bulletin boards. The teacher will hang the same number of pictures on each board. How many pictures will be on each board? There are 32 pictures to hang.

3:10 Alice forgot what 7×8 equals. Alice knows that $5 \times 8=40$ and $2 \times 8=16$
(1) Write a sentence to tell Alice how she can find the value of 7×8 by using the two facts she knows.
(2) Draw a diagram that could help Alice understand why your method works.
(3) Choose two numbers other than 7 and 8, and try using your method to multiply them. Will your method work for any pair of factors? Say why you think so.

3:11 Steven, Hawa, and 4 more friends went to the park. Steven brought 24 water balloons. Hawa brought 24 water balloons. Nobody else brought water balloons. The 6 friends shared all the
 water balloons equally. How many water balloons did each friend get?
3:12 Write the value of each product. Use as much time as you need.
If you "just knew it," then draw a check mark, like this:

$$
2 \times 2-4 \vee
$$

3:13 Write the number that makes each equation true. Use as much time as you need.

Click here for
tudent handout $3: 13$

	Write the sums and differences.With pencil and paper				Mentally
					800-300
	351	264	625	831	$240+540$
	+472	+438	-261	-444	365-165
					612-13

Math Milestones ${ }^{\text {TM }}$ Task List - Grade 3

The 14 Math Milestones ${ }^{\text {TM }}$ tasks for grade 3 have been carefully crafted to embody grade 3 mathematics on one page.

3:1 Volleyball Players	C A	3.OA.A.3, 3.OA.A
3:2 Hidden Rug Design	C	3.OA.A.1
3:3 Length and Area Quantities	C	3.MD.C
3:4 Corn Seeds	CA	3.OA.A.3, 3.OA.A
3:5 Playground Cleanup	A	3.MD.B. 3
3:6 Unit Fraction Ideas	C	3.NF.A
3:7 Locating Numbers on a Number Line	C	3.NF.A
3:8 Shape Attributes and Categories	C	3.G.A.1
3:9 Bulletin Board Pictures	C A	3.OA.A.3, 3.0A.A
3:10 Alice's Multiplication Fact	C P	3.OA.B.5, 3.MD.C.7b
3:11 Water Balloons	A	3.OA.D. 8
3:12 Products of Single-Digit Numbers	P	3.OA.C. 7
3:13 Fluency within the Multiplication Table	P	3.OA.C.7, 3.OA.A.4, 3.OA.A, B, C
3:14 Fluency within 1000 (Add/Subtract)	P	3.NBT.A. 2

Task has a conceptual focus.
$\mathrm{P}=$ Task has a procedural skill \& fluency focus.
A = Task has an application focus.

Standards for Mathematical Practice

| MP. 1 Make sense of problems and persevere in solving them. | $3: 1,3: 4,3: 6-12$ |
| :--- | :--- | :--- |
| MP. 2 Reason abstractly and quantitatively. | $3: 1-4,3: 5,3: 7,3: 9$ |
| MP. 3 Construct viable arguments and critique the reasoning of others. | $3: 2,3: 6,3: 10$ |
| MP. $\mathbf{4}$ Model with mathematics. | $3: 1,3: 4,3: 5,3: 9,3: 11$ |
| MP. 5 Use appropriate tools strategically. | $3: 3,3: 7$ |
| MP. 6 Attend to precision. | $3: 2,3: 3,3: 5,3: 7,3: 12-14$ |
| MP. 7 Look for and make use of structure. | $3: 2,3: 3,3: 6-8,3: 10,3: 13,3: 14$ |
| MP. 8 Express regularity in repeated reasoning. | $3: 6,3: 10$ |

Standards codes refer to www.corestandards.org. One purpose of the codes is that they may allow a task to shed light on the Standards cited for that task. Conversely, reading the cited Standards may suggest opportunities to extend a task or draw out its implications. Finally, Standards codes may also assist with locating relevant sections in curriculum materials, including materials aligned to comparable standards.

Math Milestones ${ }^{\text {TM }}$ was created by Jason Zimba, John W. Staley, Elizabeth Meier, Sandra Alberti, Harold Asturias, and Phil Daro.

Math Milestones ${ }^{T M}$ tasks are not designed for summative assessment. Used formatively, the tasks can reveal and promote student thinking. Student work on tasks could be collected in student portfolios.
© 2021 Student Achievement Partners, Inc. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Some Math Milestones ${ }^{\text {m }}$ tasks have been designed using image resources from Pixabay.com and illustration resources from Flaticon.com.

Student Achievement Partners believes every student should have access to joyful, asset-based, high-quality instruction. For more than a decade, our team of former educators has offered unmatched expertise on how standards-aligned math and literacy instruction can unlock student potential. Learn more at: LearnwithSAP.org

4:1 A tablespoon holds 15 ml of olive oil, which is 3 times as much as a teaspoon holds. How many ml of olive oil does a teaspoon hold?
Equation model:
Answer: \qquad

4:2	? units	? units	$\stackrel{?}{\text { units }}$
7	700 square units	210 sq units	

(1) Find the three missing lengths and write them on the diagram. Compare $\begin{array}{r}137 \\ 7 \longdiv { 9 5 9 } \\ \hline\end{array}$ answers with a classmate.
(2) What is the total area of the diagram?
(3) Look for connections between the diagram and the division problem. What connections can you see?

4:3 Everyone in class measured the length of their pencil. Here are the measurements:

(1) How many pencils were measured?
(2) How much longer was the longest pencil than the shortest pencil?
(3) Could two of the pencils be laid end to end to make a total length of 1 foot?

4:4
(1) Compare $\frac{5}{9}$ to $\frac{4}{7}$. First do it by making equal denominators. Then do it by making equal numerators.
(2) Ariana said, " $\frac{300}{400}$ looks greater than $\frac{3}{4}$. How can they be the same size?" Write or say an explanation that could help Ariana understand why $\frac{300}{400}$ and $\frac{3}{4}$ are the same size.
(3) Which is closer to 1 on a number line, $\frac{4}{5}$ or $\frac{5}{4}$? Tell how you decided. Draw a number line and show $\frac{4}{5}$ and $\frac{5}{4}$ accurately on the number line.

4:5 (1a-f) Write the values of the products. Compare answers with a classmate.
(1g) Which answer is twice as much as the answer for (e)?
(1h) Which answer is six times as much as the answer for (a)?
(1i) Which two answers are equal?
(2) Zoe was reading her math book. She saw the equation $6 \times\left(4+\frac{1}{2}\right)=$ $24+3$. She said, "I don't get it-where did the 24 and the 3 come from?" Write an explanation that could answer Zoe's question.

4:6 Grandpa took a jar of pennies to the bank. He said, "I'd like nickels for this, please." The bank teller poured the pennies into a counting machine. "Eighty-seven dollars and forty-two cents," said the teller. (1) How many nickels did Grandpa get? (2) Check your answer with an estimate.

4:7 Write the values of the expressions. Read each completed equation aloud.

$$
\begin{aligned}
& 3 \text { fifths }+2 \text { fifths }= \\
& \begin{array}{rlr}
\frac{1}{10}+\frac{3}{100} & = & \frac{6}{25}+\frac{6}{25}
\end{array}= \\
& \\
& =
\end{aligned}
$$

4:8 L is a line, R is a ray, and T is a triangle. True or false:
(1) Line L is a line of symmetry for triangle T.
(2) Line L intersects ray R.
(3) Triangle T has two angles measuring less than 90 degrees.

4:11 A cook in the school kitchen uses 6 oz of cheese to make a pizza. The kitchen has 45 lb of cheese. How many pizzas will that make?

4:12 The pickup truck can carry $1 \frac{3}{5}$ tons. The super hauler truck can carry 300 times as much. How many tons can the super hauler truck carry?

4:13 (1) A red rectangle has length $L=12$ in and width $W=6$ in. Use the formula $A=L \times W$ to find the area of the red rectangle.
(2) A blue rectangle has length 1 ft and width $\frac{1}{2} \mathrm{ft}$. Draw a picture to show that two copies of the blue rectangle make one square foot. Based on your picture, what is the area of the blue rectangle?
(3) Do the red rectangle and the blue rectangle have equal areas? Tell how you decided.

4:14 $540,909+87,808-5,864+2,556=?$

Math Milestones ${ }^{\text {TM }}$ Task List - Grade 4

The 14 Math Milestones ${ }^{\text {TM }}$ tasks for grade 4 have been carefully crafted to embody grade 4 mathematics on one page.

4:1 A Tablespoon of Oil	C A	4.OA.A. 2
4:2 Multi-Digit Division Concepts	C	4.NBT.B. 6
4:3 Pencil Data	A	4.MD.B. 4
4:4 Comparing Fractions with Equivalence	C	4.NF.A
4:5 Fraction Products and Properties	C	4.NF.B.4a, 4b
4:6 Jar of Pennies	A P	4.OA.A. 3
4:7 Fraction Sums and Differences	C P	4.NF.B.3a-c, 4.NF.C.5, 6
4:8 Shapes with Given Positions	C	4.MD.C, 4.G.A
4:9 Fitness Day	C A	4.NF.B.3d
4:10 Calculating Products and Quotients	P	4.NBT.B
4:11 School Kitchen	A	4.MD.A.2, 4.NBT.B. 5
4:12 Super Hauler Truck	C A	4.NF.B.4c, 4.OA.A. 2
4:13 Area Units	C	4.MD.A. 3
4:14 Fluency with Multi-Digit Sums and Differences	P	4.NBT.B. 4

C = Task has a conceptual focus.
P = Task has a procedural skill \& fluency focus.
A = Task has an application focus.

Standards for Mathematical Practice

MP. 1 Make sense of problems and persevere in solving them
MP. 2 Reason abstractly and quantitatively.
MP. 3 Construct viable arguments and critique the reasoning of others.
MP. 4 Model with mathematics
MP. 5 Use appropriate tools strategically.
MP. 6 Attend to precision.
MP. 7 Look for and make use of structure.
MP. 8 Express regularity in repeated reasoning.

4:6, 4:11

4:1, 4:2, 4:3, 4:6
4:4, 4:5, 4:13
4:1, 4:3, 4:6, 4:9, 4:11, 4:12
4:5(2), 4:8
4:4, 4:8, 4:10, 4:13, 4:14
$4: 2,4: 5,4: 7,4: 8,4: 10,4: 14$
4:4, 4:5, 4:7

Standards codes refer to www.corestandards.org. One purpose of the codes is that they may allow a task to shed light on the Standards cited for that task. Conversely, reading the cited Standards may suggest opportunities to extend a task or draw out its implications. Finally, Standards codes may also assist with locating relevant sections in curriculum materials, including materials aligned to comparable standards.

Math Milestones ${ }^{\text {TM }}$ was created by Jason Zimba, John W. Staley, Elizabeth Meier, Sandra Alberti, Harold Asturias, and Phil Daro.

Math Milestones ${ }^{\mathrm{TM}}$ tasks are not designed for summative assessment. Used formatively, the tasks can reveal and promote student thinking Student work on tasks could be collected in student portfolios.

[^0] unlock student potential. Learn more at: LearnwithSAP.org

5:1 A school needed 240 four-packs of juice boxes for a field trip. However, the school accidentally bought 240 six-packs of juice boxes. How many extra juice boxes did the school buy?

5:2 After a hurricane, the 12 residents of a nursing home didn't have any clean water to drink. Their neighbors donated 40 gallons of bottled water, which would provide \qquad gallons for each resident.

5:3 A neighborhood garden will have 6 wooden planting boxes. Every box will have the same shape (see diagram). Soil can be bought by the truckload; a truckload is $54 \mathrm{ft}^{3}$ of soil. How many truckloads of soil will fill all of the boxes?

5:4 (1) Circle T for true or F for false.
(a) 9 thousandths +5 hundredths
>3 hundredths +2 tenths
T F
(b) 92 hundredths +4 thousandths >0.924

T F
(c) $0.456<0.5$

$$
T \quad F
$$

(2) Write each number in the requested form.
(a) 7 thousandths +5 tenths $=\quad$ (decimal)
(b) 0.1 tenths $=$ \qquad (decimal)
(c) $\frac{2}{100}+\frac{5}{1000}=$ \qquad (decimal)
\qquad (fraction in lowest terms)

5:5 Write the requested values.

$4087 \times 53=?$	$\frac{1}{10} \div 10=?$	$0.4 \times 0.9=?$
$246 \times 914=?$	$\frac{7}{8} \times \frac{5}{3}=?$	$0.75 \div 0.01=?$
$9744 \div 12=?$	$8 \times ?=73$	$0.63 \div 0.3=?$
$1461 \div 6=?$	$0.86+0.4=?$	
$4-(8-4)=?$	$3 \div \frac{1}{8}=?$	$0.72-0.17=?$
	$\frac{1}{2}+\frac{1}{3}-\frac{1}{5}=?$	$0.02+0.2=?$
	$\frac{1}{3} \div(6 \times 5)=?$	$0.8-0.55=?$
	$637-1.31=?$	

5:6 (1) Arya and Lily's house is $\frac{1}{5}$ mile from the store.
(a) Arya ran $\frac{1}{3}$ of the

way from her house to
the store. How far, in miles, did Arya run? (b) Lily ran $\frac{2}{3}$ of the way from her house to the store. How far, in miles, did Lily run? (2) It is $\frac{2}{5}$ mile from Leon's house to the store. (a) Leon ran $\frac{1}{3}$ of the way from his house to the store. How far, in miles, did Leon run?
(b) Compare how far Leon and Lily ran; what do you notice, and why is it true?

Shipwrecks are at locations $A\left(2,1 \frac{1}{4}\right)$ and $B\left(4,1 \frac{1}{4}\right)$. Shipwrecks are also at locations $C\left(4,3 \frac{1}{2}\right)$ and D ($2,3 \frac{1}{2}$). (1) Mark C and D on the map and shade rectangle $A B C D$. (2) Some believe there is sunken treasure in the region you shaded. How large is that region in mi^{2} ?

5:8 A scalene triangle is a triangle in which the sides all have different lengths. Thinking about this, Alana decided there should also be a name for quadrilaterals in which the sides all have different lengths. She said, "I'll name them after myself." She defined an alana-gon to be a quadrilateral in which the four sides all have different lengths. (1) Draw an example of an alana-gon. (2) True or false: (a) All squares are alana-gons. (b) No trapezoids are alana-gons.

5:9 On Saturday there was a walkathon.

Catherine

How many miles did Leslie walk?
5:10 (1) Solve: $\frac{1}{3}=0.1+$?
(2) Is there a number greater than $\frac{1}{5}$ and less than $\frac{1}{4}$? If you think so, find such a number. If you think there is no such number, explain why.
(3) Show one of the above problems and its solution on a number line.

5:11 Juliet said, "I'm thinking of a rectangle. Its area is 1 square unit. Its perimeter is more than 1 million units." (1) Is Juliet thinking of something possible or impossible? Use math to decide for sure.
(2) Explain your reasoning to your classmates. Revise your explanation based on suggestions from your classmates.

5:12 Before it rained, the teacher went outside and placed identical baking pans on the ground. After it rained, the teacher brought the pans inside, and students measured how much water was collected in each pan. ${ }_{x}^{x}$ Water Collected

If all the water collected were shared equally among the pans, how much water would be in each pan?

5:13 In a snack shop there is a frozen yogurt machine. When there is 31 of frozen yogurt in the machine, the machine is $\frac{1}{3}$ full. How much frozen yogurt is in the machine when it is $\frac{1}{4}$ full?
5:14 Brandon was reading his math book. He saw the equation $\frac{3}{4} \times\left(4+\frac{1}{2}\right)=3+\frac{3}{8}$. He said, "I don't get it-where did the 3 and the $\frac{3}{8}$ come from?" Write an explanation that could answer Brandon's question.

Math Milestones ${ }^{\text {TM }}$ Task List - Grade 5

The 14 Math Milestones ${ }^{\text {TM }}$ tasks for grade 5 have been carefully crafted to embody grade 5 mathematics on one page.

5:1	Juice Box Mixup	C A	5.OA.A.2, 5.NBT.B. 5
5:2	Water Relief	C A	5.NF.B. 3
5:3	Neighborhood Garden	A	5.MD.A, B
5:4	Place Value to Thousandths	C	5.NBT.A
5:5	Calculating	P	5.NBT.B, 5.NF.A, B
5:6	Corner Store	C A	5.NF.B.4a, 5.NF.B.6
5:7	Shipwrecks	C A	5.NF.B.4b, 5.G.A
5:8	Alana's New Shape Category	C	5.G.B
$5: 9$	Walkathon	A P	5.NF.A.1, 2
5:10	Number System, Number Line	C	5.NF.A.1
5:11	Juliet's Rectangle	C	5.NF.B
5:12	Rain Measurements	A	5.MD.B
5:13	Frozen Yogurt Machine	A	5.NF.B.6, 7
5:14	Brandon's Equation	C	5.NF.B.4a

C = Task has a conceptual focus.
P = Task has a procedural skill \& fluency focus.
A = Task has an application focus.

Standards for Mathematical Practice

MP. 1 Make sense of problems and persevere in solving them.
MP. 2 Reason abstractly and quantitatively.
MP. 3 Construct viable arguments and critique the reasoning of others.
MP. 4 Model with mathematics.
MP. 5 Use appropriate tools strategically.
MP. 6 Attend to precision.
MP. 7 Look for and make use of structure.
MP. 8 Express regularity in repeated reasoning.

5:3, 5:6, 5:10, 5:11, 5:13 5:2, 5:6, 5:7, 5:9, 5:11-13 5:6, 5:8, 5:10, 5:11, 5:14 5:1-3, 5:6, 5:7, 5:9, 5:12, 5:13 5:10, 5:13, 5:14
5:4, 5:5, 5:8, 5:11
5:1, 5:4-7, 5:14
5:6, 5:8, 5:11

Standards codes refer to www.corestandards.org. One purpose of the codes is that they may allow a task to shed light on the Standards cited for that task. Conversely, reading the cited Standards may suggest opportunities to extend a task or draw out its implications. Finally, Standards codes may also assist with locating relevant sections in curriculum materials, including materials aligned to comparable standards.

Math Milestones ${ }^{\text {TM }}$ was created by Jason Zimba, John W. Staley, Elizabeth Meier, Sandra Alberti, Harold Asturias, and Phil Daro.

Math Milestones ${ }^{\mathrm{TM}}$ tasks are not designed for summative assessment. Used formatively, the tasks can reveal and promote student thinking. Student work on tasks could be collected in student portfolios.

[^1]
[^0]: © 2021 Student Achievement Partners, Inc. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). To view a copy of this license, visit http://creativecommons.org licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

 Some Math Milestones ${ }^{\text {™ }}$ tasks have been designed using image resources from Pixabay.com

 Student Achievement Partners believes every student should have access to joyful, asset-based, high-quality instruction. For more than a decade, our team of former educators has offered unmatched expertise on how standards-aligned math and literacy instruction can

[^1]: © 2021 Student Achievement Partners, Inc. This work is licensed under

 Student Achievement Partners believes every student should have access to joyful, asset- based, high- quality instruction. For more than a decade, our team of former educators has offered unmatched expertise on how standards- aligned math and literacy instruction can unlock student potential. Learn more at: LearnwithSAP.org
 the Creative Commons Attribution 4.0 International License (CC BY 4.0), To view a copy of this license, visit http://creativecommons.org/ To view a copy of this license, visit http:// creativecommons.org/
 licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

 Some Math Milestones ${ }^{\text {™ }}$ tasks have been designed using image resources from Pixabay.com.

