2:1
Avi made a paper chain. Then Avi
added 29 more links to the paper
chain. Now there are 52 links
in the paper chain. How many links
were in the paper chain before?

2:2 (1) True or false?
(a) 2 hundreds +3 ones >5 tens +9 ones
(b) 9 tens +2 hundreds +4 ones <924
(c) $456<5$ hundreds
(2) Write the number that makes each statement true.
(a) 7 ones +5 hundreds = \qquad
(b) 14 tens $=$ \qquad
(c) $90+300+4=$ \qquad

2:3	Write the sums and differences.	$\begin{array}{r} 36 \\ +45 \\ \hline \end{array}$	$\begin{array}{r} 72 \\ -17 \\ \hline \end{array}$	$\begin{array}{r} 64 \\ +27 \end{array}$	$\begin{array}{r} 82 \\ -55 \\ \hline \end{array}$

2:4 Faith went to the park. The picture graph shows all of the animals Faith saw.

Faith said, "I saw fewer butterflies than birds." How many fewer butterflies did Faith see?

2:5 Write the value of each sum. Use as much time as you need. If you "just knew it," then draw a check mark, like this: $2+24 \sqrt{4}$ student handout 2:5

2:6 A rope is 32 feet long. The rope is cut into two pieces. One piece is 3 feet long. How long is the other piece?
Equation model:
Answer: \qquad feet

2:7 (1) Write the number that makes the statement true.
6 hundreds +3 tens +4 ones
= 5 hundreds + \qquad tens +4 ones.
(2) How do you know your statement is true?
(3) Look for connections between your statement and this $\begin{array}{r}513 \\ 634 \\ -482 \\ \hline 152\end{array}$

2:8 Write the number that makes each equation true. Use as much time as you need.

2:9 A farmer said, "Last night some deer came and ate 16 of my cabbages. Now I only have 38 cabbages." How many cabbages were there before the deer came?
Equation model: \qquad
Answer: There were \qquad cabbages.

2:10 Check the subtraction by adding. $946-678=268$

2:11 A grass snake is 28 inches long. A rat snake is 74 inches long. How much longer is the rat snake?
Draw a diagram to illustrate your solution. Label the diagram with numbers.

2:12 At recess there was a jump-rope contest.

How many times did Catherine jump?
Equation model: \qquad
Answer: Catherine jumped \qquad times.

2:13 Marlon and Malia went apple-picking.

How many apples did Malia pick?
Equation model: \qquad
Answer: Malia picked \qquad apples.

2:14 Zariah got one answer wrong.
(1) Which answer did Zariah get wrong?
(2) Correct Zariah's wrong answer.
(a) Show how the rectangle can be divided into 15 squares.

(b) 2 halves make one whole.
(c) Draw a triangle. All three sides of your triangle must have different lengths.

Math Milestones ${ }^{\text {TM }}$ Task List - Grade 2

The 14 Math Milestones ${ }^{\text {TM }}$ tasks for grade 2 have been carefully crafted to embody grade 2 mathematics on one page.

2:1	Paper Chain
2:2	Place Value to Hundreds
2:3	Fluency within 100 (Add/Subtract)
2:4	Animals in the Park
2:5	Sums of Single-Digit Numbers
2:6	Cutting a Rope
2:7	Subtraction Regrouping
2:8	Fluency within the Addition Table
2:9	Disappearing Cabbages
2:10	Three-Digit Addition/Subtraction
2:11	Grass Snake vs. Rat Snake
2:12	Jump-Rope Contest
2:13	Apple-Picking
2:14	Correcting a Shape Answer

C = Task has a conceptual focus
$\mathrm{P}=$ Task has a procedural skill \& fluency focus.
A = Task has an application focus.

Standards for Mathematical Practice

MP. 1 Make sense of problems and persevere in solving them.	$2: 1,2: 2,2: 5-9,2: 11-14$
MP. 2 Reason abstractly and quantitatively.	$2: 6,2: 7,2: 11-13$
MP. 3 Construct viable arguments and critique the reasoning of others.	$2: 7,2: 14$
MP. 4 Model with mathematics.	$2: 1,2: 4,2: 6,2: 9,2: 11-13$
MP. 5 Use appropriate tools strategically.	$2: 14$
MP. 6 Attend to precision.	$2: 2-5,2: 7,2: 8,2: 10$
MP. 7 Look for and make use of structure.	$2: 2,2: 3,2: 7,2: 10,2: 14$
MP. 8 Express regularity in repeated reasoning.	$2: 2$

MP. 8 Express regularity in repeated reasoning.
Standards codes refer to www.corestandards.org. One purpose of the codes is that they may allow a task to shed light on the Standards cited for that task. Conversely, reading the cited Standards may suggest opportunities to extend a task or draw out its implications. Finally, Standards codes may also assist with locating relevant sections in curriculum materials, including materials aligned to comparable standards.

Math Milestones ${ }^{\text {TM }}$ was created by Jason Zimba, John W. Staley, Elizabeth Meier, Sandra Alberti, Harold Asturias, and Phil Daro.

Math Milestones ${ }^{T M}$ tasks are not designed for summative assessment. Used formatively, the tasks can reveal and promote student thinking Student work on tasks could be collected in student portfolios.
© 2021 Student Achievement Partners, Inc. This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). To view a copy of this license, visit http://creativecommons.org licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866 Mountain View, CA 94042, USA

Some Math Milestones™ tasks have been designed using image resources from Pixabay.com

Student Achievement Partners believes every student should have access to joyful, asset-based, high-quality instruction. For more than a decade, our team of former educators has offered unmatched expertise on how standards-aligned math and literacy instruction can unlock student potential. Learn more at: LearnwithSAP.org

